Math 261

Fall 2023
Lecture 18

Feb 19-8:47 AM

> class Qt 9
> Use calculus method to find all points
> on the graph of $f(x)=x^{2}+4 x+8$ with
> horizontal tangent line.
> $m=0, f^{\prime}(x)=0$
> $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+4(x+h)+8-\left(x^{2}+4 x+8\right)}{h}$
> $=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+4 x+4 h+8-x^{2}-4 x-8}{h}$
> $=\begin{aligned} & h \rightarrow 0 \\ & =\lim _{h \rightarrow 0} \frac{K(2 x+h+4)}{K K}=\lim _{h \rightarrow 0}(2 x+h+4)=\frac{f^{\prime}(x)}{2 x+4}\end{aligned}$
> $\begin{array}{rlr}f^{\prime}(x)=0 \rightarrow 2 x+4=0 & f(-2)=(-2)^{2}+4(-2)+8=4-888=44 \\ x=-2, & \operatorname{Point}(-2,4)\end{array}$
> $\underbrace{p}_{(-2,4)} f(x)=x^{2}+4 x+8$

Now limits at $\pm \infty$

$\begin{aligned} & f(x)=\frac{x-2}{x-1} \\ & \text { Domain: } x \neq 1\end{aligned} \quad \square x=1$ is a vertical asymptote

$$
x-\text { Int } \rightarrow y=0 \rightarrow f(x)=0 \rightarrow \frac{x-2}{x-1}=0 \rightarrow x-2=0 \quad x=2
$$

Y-Int $\rightarrow x=0 \rightarrow f(0)=\frac{0-2}{0-1}=\frac{-2}{-1}=2$

If let $x=100$

$$
\begin{aligned}
& f(100)=\frac{100-2}{100-1}=\frac{98}{99} \approx 1 \\
& x \rightarrow \infty \rightarrow f(x) \rightarrow 1 \\
& \text { If we let } x=-100 \\
& S(-100)=\frac{-102}{-101} \approx 1
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} \frac{x-2}{x-1}=\frac{\infty}{\infty} \text { IF. }
$$

Divide by x

$$
\lim _{x \rightarrow \infty} \frac{\frac{x}{x}-\frac{2}{x}}{\frac{x}{x}-\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{1-\frac{2}{x}}{1-\frac{1}{x}}=
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{1}-\lim _{x \rightarrow \infty} \frac{2^{x}}{x} \\
& \lim _{x \rightarrow \infty} 1^{1}-\lim _{x \rightarrow \infty} \frac{1^{+0}}{x} \\
& =\frac{1-0}{1-0}=1
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-5 x+8}{2 x^{2}+3 x-4}=\frac{\infty}{\infty}$ I.F.
Divide everything by highest power of x from the denominator. $\Rightarrow x^{2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}-\frac{5 x}{x^{2}}+\frac{8}{x^{2}}}{2 \frac{x^{2}}{x^{2}}+\frac{3 x}{x^{2}}-\frac{4}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1-\frac{5}{x}+\frac{8}{x^{2}}}{2+\frac{3}{x}-\frac{4}{x^{2}}} \\
& =\frac{\lim _{x \rightarrow \infty} 7-\lim _{x \rightarrow \infty} \frac{5}{x}+\lim _{x \rightarrow \infty} \frac{8}{x^{2}}}{\lim _{x \rightarrow \infty} 2+\lim _{x \rightarrow \infty} \frac{3}{x}-\lim _{x \rightarrow \infty} \frac{4}{x^{2}}}=\frac{1-0+0}{2+0-0}=\frac{1}{2}
\end{aligned}
$$

Sep 28-10:42 AM

Evaluate $\lim _{x \rightarrow \infty} \frac{3 x+5}{\sqrt{4 x^{2}-1}}=\frac{\infty}{\infty}$ I. F.
Divide everything by x, Keep in mind

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{3 x}{x}+\frac{5}{x}}{\frac{\sqrt{4 x^{2}-1}}{x}}=\lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}}{\sqrt{\frac{4 x^{2}-1}{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}}{\sqrt{\frac{4 x^{2}}{x^{2}}-\frac{1}{x^{2}}}}=\lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}}{\sqrt{4-\frac{1}{x^{2}}}} \\
& =\frac{3}{\sqrt{4}}=\frac{3}{2}
\end{aligned}
$$

Sep 28-11:01 AM

$$
\begin{aligned}
& \text { Evaluate } \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x}-x\right)=\infty-\infty \\
& \text { I.F. } \\
& =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+4 x}-x\right)\left(\sqrt{x^{2}+4 x}+x\right)}{1\left(\sqrt{x^{2}+4 x}+x\right)} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+4 x-x^{2}}{\sqrt{x^{2}+4 x}+x}=\lim _{x \rightarrow \infty} \frac{4 x}{\sqrt{x^{2}+4 x}+x}=\frac{\infty}{\infty} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{4 x}{x}}{\sqrt{\frac{x^{2}+4 x}{x^{2}}}+\frac{x}{x}} \quad \text { as } x \rightarrow \infty \\
& =\lim _{x \rightarrow \infty} \frac{4}{\sqrt{1+\frac{40}{x}}+1}=\frac{4}{\sqrt{1}+1}=\frac{4}{2}=\sqrt{2} \\
& \text { If } x=1000 \\
& \sqrt{1000^{2}+4(1000)}-1000=1.99800399 \\
& \text { If } x=1000000 \\
& \sqrt{1000000^{2}+4(1000000)}-1000000=1.999998
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \cos \frac{1}{x} \\
& =\operatorname{Cos}\left(\lim _{x \rightarrow \infty} \frac{1}{x}\right) \\
& =\cos 0=1
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1$
Evaluate $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{-x}=-1$

Sep 28-11:21 AM

